4.1. Generalidades
DEFINICIÓN:
Utilizando la división de una circunferencia en partes iguales o el trazado de polígonos regulares y uniendo sus divisiones o vértices de dos en dos, de tres en tres, de cuatro en cuatro, etc., se obtienen polígonos regulares estrellados (tiene forma de estrella).
Actividad
- Género (g): es el número de lados o cuerdas de la circunferencia que forman el polígono estrellado.
- Especie (e): es el número de vueltas que hay que dar hasta completar o cerrar el polígono.
- Paso (p): es el número de divisiones de la circunferencia que abarca un lado del polígono.
En general, un polígono regular de n lados tiene tantos polígonos estrellados como números primos de n haya menores de n/2
Para calcular el número de polígonos estrellados que tiene un polígono regular basta con deducir el número de cifras primas con el polígono dado menores que su mitad; por ejemplo, el polígono de cinco lados (pentágono) tiene un polígono estrellado, uniendo de dos en dos sus vértices, ya que los números primos con 5 menores que su mitad es sólo el 2. Dependiendo del polígono elegido (el número de lados) el orden de unión de los vértices cambiará.
Los polígonos estrellados que se corresponden con los polígonos convexos son:
POLÍGONO |
GÉNERO |
ESPECIE |
Nº DE POLÍGONOS ESTRELLADOS |
MÉTODO |
PENTÁGONO |
5 |
2 |
2 |
UNIENDO DE 2 EN 2 |
HEPTÁGONO |
7 |
2 |
2 |
UNIENDO DE 2 EN 2 |
7 |
3 |
UNIENDO DE 3 EN 3 |
||
OCTÓGONO |
8 |
3 |
3 |
UNIENDO DE 3 EN 3 |
ENEÁGONO |
9 |
2 |
2 |
UNIENDO DE 2 EN 2 |
9 |
4 |
UNIENDO DE 4 EN 4 |
||
DECÁGONO |
10 |
3 |
1 |
UNIENDO DE 3 EN 3 |
UNDECÁGONO |
11 |
2 |
4 |
UNIENDO DE 2 EN 2 |
11 |
3 |
UNIENDO DE 3 EN 3 |
||
11 |
4 |
UNIENDO DE 4 EN 4 |
||
11 |
5 |
UNIENDO DE 5 EN 5 |
||
DODECÁGONO |
12 |
5 |
1 |
UNIENDO DE 5 EN 5 |
Para que un polígono se considere estrellado todos sus lados se deben dibujar sin levantar el lápiz: uniendo todos los vértices hasta completar el polígono en el vértice de partida.
Los estrellados impropios, o falsos estrellados, no cumplen la anterior condición, caso del hexágono.
Los polígonos estrellados se obtienen a partir del dato facilitado para su construcción.:
- Conocido el radio de la circunferencia inscrita.
- Conocido el lado del polígono convexo que lo circunscribe.
- Conocido el lado del polígono (diagonal del polígono convexo).
Pre-conocimiento
La aplicación de los polígonos estrellado más común en el arte arábe es la Lacería, que es un adorno o decoración realizado mediante molduras o líneas que se enlazan o cruzan entre sí formando figuras geométricas. Se usaba en la elaboración de alicatados o celosías